
Issues and Comments about Object Oriented Technology in Aviation

Issue

Topic Issue Statement

1 Dead/ deactivated
code

Deactivated Code will be found in any application that uses
general purposed libraries or object-oriented frameworks. (Note
that this is the case where unused code is NOT removed by smart
linkers.)

2 Dynamic binding/
dispatch

Flow Analysis, recommended for Levels A-C, is complicated by
Dynamic Dispatch (just which method in the inheritance
hierarchy is going to be called?).

3 Dynamic binding/
dispatch

Timing Analysis, recommended for Levels A-D is complicated
by Dynamic Dispatch (just how much time will be expended
determining which method to call?).

4 Dynamic binding/
dispatch

Requirements Testing, recommended for Levels A-D, and
Structural Coverage Analysis, recommended for Levels A-C, are
complicated by Inheritance, Overriding and Dynamic Dispatch
(just how much of the existing verification of the parent class can
be reused in its subclasses?).

5 Dynamic binding/
dispatch

Structural Coverage Analysis, recommended for Levels A-C, is
complicated by Dynamic Dispatch (just which method in the
inheritance hierarchy does the execution apply to?).

6 Dynamic binding/
dispatch

Conformance to the guidelines in DO-178B concerning
traceability from source code to object code for Level A software
is complicated by Dynamic Dispatch (how is a dynamically
dispatched call represented in the object code?).

7 Dynamic binding/
dispatch

Polymorphic, dynamically bound messages can result in code that
is error prone and hard to understand.

8 Dynamic binding/
dispatch

Dynamic dispatch presents a problem with regard to the
traceability of source code to object code that requires “additional
verification” for level A systems as dictated by DO-178B section
6.4.4.2b.

9 Dynamic binding/
dispatch

Dynamic dispatch complicates flow analysis, symbolic analysis,
and structural coverage analysis.

10 Dynamic binding/
dispatch

Inheritance, polymorphism, and linkage can lead to ambiguity.

11 Dynamic binding/
dispatch

The use of inheritance and polymorphism may cause difficulties
in obtaining structural coverage, particularly decision coverage
and MC/DC

12 Dynamic binding/
dispatch

Source to object code correspondence will vary between
compilers for inheritance and polymorphism.

13 Dynamic binding/
dispatch

Polymorphic and overloaded functions may make tracing and
verifying the code difficult.

14 Inheritance Requirements Testing, recommended for Levels A-D, and
Structural Coverage Analysis, recommended for Levels A-C, are
complicated by Inheritance, Overriding and Dynamic Dispatch
(just how much of the existing verification of the parent class can
be reused in its subclasses?).

15 Inheritance Multiple interface inheritance can introduce cases in which the
developer’s intent is ambiguous. (when the same definition is
inherited from more than one source is it intended to represent the
same operation or a different one?)

16 Inheritance Flow Analysis and Structural Coverage Analysis, recommended
for Levels A-C, are complicated by Multiple Implementation
Inheritance (just which of the inherited implementations of a
method is going to be called and which of the inherited
implementations of an attribute is going to be referenced?). The
situation is complicated by the fact that inherited elements may
reference one another and interact in subtle ways which directly
affect the behavior of the resulting system.

17 Inheritance Use of inheritance (either single or multiple) raises issues of
compatibility between classes and subclasses.

18 Inheritance Inheritance and overriding raise a number of issues with respect
to testing: “Should you retest inherited methods? Can you reuse
superclass tests for inherited and overridden methods? To what
extent should you exercise interaction among methods of all
superclasses and of the subclass under test?”

19 Inheritance Inheritance can introduce problems related to initialization. “Deep
class hierarchies [in particular] can lead to initialization bugs.”
There is also a risk that a subclass method will be called (via
dynamic dispatch) by a higher level constructor before the
attributes associated with the subclass have been initialized.

20 Inheritance “A subclass-specific implementation of a superclass method is
[accidentally] omitted. As a result, that superclass method might
be incorrectly bound to a subclass object, and a state could result
that was valid for the superclass but invalid for the subclass
owing to a stronger subclass invariant. For example, Object-level
methods like isEqual or copy are not overridden with a necessary
subclass implementation”.

21 Inheritance “A subclass [may be] incorrectly located in a hierarchy. For
example, a developer locates SquareWindow as a subclass of
RectangularWindow, reasoning that a square is a special case of a
rectangle ... Suppose that [the method] resize(x, y) is inherited by
SquareWindow. It allows different lengths for adjacent sides,
which causes SquareWindow to fail after it has been resized. This
situation is a design problem: a square is not a kind of a rectangle,
or vice versa. Instead both are kinds of four-sided polygons. The
corresponding design solution is a superclass FourSidedWindow,
of which RectangularWindow and SquareWindow are
subclasses.”

22 Inheritance “A subclass either does not accept all messages that the
superclass accepts or leaves the object in a state that is illegal in
the superclass. This situation can occur in a hierarchy that should
implement a subtype relationship that conforms to the Liskov
substitution principle.”

23 Inheritance “A subclass computes values that are not consistent with the
superclass invariant or superclass state invariants.”

24 Inheritance “Top-heavy multiple inheritance and very deep hierarchies (six or
more subclasses) are error-prone, even when they conform to
good design practice. The wrong variable type, variable, or
method may be inherited, for example, due to confusion about a
multiple inheritance structure”

25 Inheritance The ability of a subclass to directly reference inherited attributes
tightly couples the definitions of the two classes.

26 Inheritance Inheritance can be abused by using it as a “kind of code-sharing
macro to support hacks without regard to the resulting semantics”

27 Inheritance When the same operation is inherited by an interface via more
than one path through the interface hierarchy (repeated

inheritance), it may be unclear whether this should result in a
single operation in the subinterface, or in multiple operations.

28 Inheritance When a subinterface inherits different definitions of the same
operation [as a result of redefinition along separate paths], it may
be unclear whether/how they should be combined in the resulting
subinterface.

29 Inheritance Use of multiple inheritance can lead to “name clashes” when
more than one parent independently defines an operation with the
same signature.

30 Inheritance When different parent interfaces define operations with different
names but compatible specifications, it is unclear whether it
should be possible to merge them in a subinterface.

31 Inheritance It is unclear whether the normal overload resolution rules should
apply between operations inherited from different superinterfaces
or whether they should not (as in C++).

32 Inheritance It is important that the overriding of one operation by another and
the joining of operations inherited from different sources always
be intentional rather than accidental.

33 Inheritance Multiple inheritance complicates the class hierarchy
34 Inheritance Multiple inheritance complicates configuration control
35 Inheritance When inheritance is used in the design, special care must be taken

to maintain traceability. This is particularly a concern if multiple
inheritance is used.

36 Inheritance Source to object code correspondence will vary between
compilers for inheritance and polymorphism.

37 Inheritance Overuse of inheritance, particularly multiple inheritance, can lead
to unintended connections among classes, which could lead to
difficulty in meeting the DO-178B/ED-12B objective of data and
control coupling.

38 Inheritance Multiple inheritance should be avoided in safety critical, certified
systems.

39 Inheritance “Top-heavy multiple inheritance and very deep hierarchies (six or
more subclasses) are error-prone, even when they conform to
good design practice. The wrong variable type, variable, or
method may be inherited, for example, due to confusion about a
multiple inheritance structure”

40 Inheritance Reliance on programmer specified optimizations of the
inheritance hierarchy (invasive inheritance) is potentially error
prone and unsuitable for safety critical applications.

41 Inheritance Inheritance, polymorphism, and linkage can lead to ambiguity.
42 Inheritance Inheritance allows different objects to be treated in the same

general way.
Inheritance as used in Object Oriented Technology is combining
several like things into a fundamental building block. The
programmer is allowed to take a group of these like things and
refer to them in a general way. One routine can be used for all
types that inherit from the fundamental building block. The more
often a programmer can use the generic behavior of the parent,
the more productive the programmer is. The problem I see is that
the generic behavior will not always be precise enough for all the
applications, and that critical judgement is required to determine
when the programmer needs to specialize the behavior of one of
the object rather than use the generic. Who will issue that critical
judgement? Who will find all the instances where the general
case is too far away from the precision required?

43 Inlining Flow Analysis, recommended for levels A-C, is impacted by
Inlining (just what are the data coupling and control coupling
relationships in the executable code?). The data coupling and
control coupling relationships can transfer from the inlined
component to the inlining component.

44 Inlining Stack Usage and Timing Analysis, recommended for levels A-D,
are impacted by Inlining (just what are the stack usage and worst-
case timing relationships in the executable code?). Since inline
expansion can eliminate parameter passing, this can effect the
amount of information pushed on the stack as well as the total
amount of code generated. This, in turn, can effect the stack
usage and the timing analysis.

45 Inlining Structural Coverage Analysis, recommended for levels A-C, is
complicated by Inlining (just what is the “logical” coverage of the
inline expansions on the original source code?). This is generally
only a problem when inlined code is optimized. If statements are
removed from the inlined version of a component, then coverage

of the inlined component is no longer sufficient to assert coverage
of the original source code.

46 Inlining Conformance to the guidelines in DO-178B concerning
traceability from source code to object code for Level A software
is complicated by Inlining (is the object code traceable to the
source code at all points of inlining/expansion?). Inline expansion
may not be handled identically at different points of expansion.
This can be especially true when inlined code is optimized.

47 Inlining Inlining may affect tool usage and make structural coverage more
difficult for levels A, B, and C.

48 Structural coverage The unrestricted use of certain object-oriented features may
impact our ability to meet the structural coverage criteria of DO-
178B.

49 Structural coverage Statement coverage when polymorphism, encapsulation or
inheritance is used.

50 Templates Templates are instantiated by substituting a specific type
argument for each formal type parameter defined in the template
class or operation. Passing a test suit for some but not all
instantiations cannot guarantee that an untested instantiation is
bug free.

51 Templates Nested templates, child packages (Ada), and friend classes (C++)
can result in complex code and hard to read error messages on
many compilers.

52 Templates Templates can be compiled using "code sharing" or "macro-
expansion". Code sharing is highly parametric, with small
changes in actual parameters resulting in dramatic differences in
performance. Code coverage, therefore, is difficult and mappings
from a generic unit to object code can be complex when the
compiler uses the "code sharing" approach.

53 Templates Macro-expansion can result in memory and timing issues, similar
to those identified for inlining.

54 Templates The use of templates can result in code bloat. Many C++
compilers cause object code to be repeated for each instance of a
template of the same type.

55 Tools How can we meet the structural coverage requirements of DO-
178B with respect to dynamic dispatch? There is cause for

concern because many current Structural Coverage Analysis tools
do not “understand” dynamic dispatch, i.e. do not treat it as
equivalent to a call to a dispatch routine containing a case
statement that selects between alternative methods based on the
run-time type of the object.

56 Tools How can we meet the control and data flow analysis requirements
of DO-178B with respect to dynamic dispatch?

57 Tools How can deactivated code be removed from an application when
general purpose libraries and object-oriented frameworks are used
but not all of the methods and attributes of the classes are needed
by a particular application?

58 Tools How can we enforce the rules that restrict the use of specific OO
features?

59 Other Implicit type conversion raises certification issues related to
source to object code traceability, the potential loss of data or
precision, and the ability to perform various forms of analysis
called for by [DO-178B] including structural coverage analysis
and data and control flow analysis. It may also introduce
significant hidden overheads that affect the performance and
timing of the application.

60 Other Overloading can be confusing and contribute to human error
when it introduces methods that have the same name but different
semantics. Overloading can also complicate matters for tools
(e.g., structural coverage and control flow analysis tools) if the
overloading rules for the language are overly complex.

61 Other Loss of traceability due to the translation of functional
requirements to an object-oriented design.

62 Other Functional coverage of the low level requirement
63 Other Philosophy of Functional Software Engineering - Most of the

training, tools and principles associated with software engineering
and assurance, including those of RTCA DO-178B, have been
focused on a software function perspective, in that there is an
emphasis on software requirements and design and verification of
those requirements and the resulting design using reviews,
analyses, and requirements-based (functional) testing, and RBT
coverage and structural coverage analysis.

Philosophy of Objects and Operations - Although generally
loosely and inconsistently defined, OOT focuses on "objects" and
the "operations" performed by and/or to those objects, and may
have a philosophy and perspective that are not very conducive to
providing equivalent levels of design assurance as the current
"functional" approach.

64 Other Software/software integration testing is often avoided. The
position defended by the industry is that the high level of
interaction between a great number of objects could lead to a
combinative explosion of test cases.

65 Other Could there be security concerns related to the use of COTS
based OOT solutions? Particularly with respect to field loadable
software, security risks have been mitigated by the unique
architectures of most current systems.

66 Other Use of dynamic memory allocation/deallocation and use of
exception handling were raised as issues by Leanna Rierson in
her paper "Object-Oriented Technology (OOT) in Civil Aviation
Projects: Certification Concerns" but are currently missing from
the list of concerns. If the FAA is concerned about these two
items, they should be discussed at the workshop.

67 Other Most OO languages use reference semantics for passing objects
(e.g. Java only supports reference semantics; C++ also supports
passing by value but this is rarely used and cannot be used when
dynamic binding is required). This results in variables being
aliased to each other. It is difficult to analyse the effect of this
aliasing on program behaviour because many tools do not allow
for the possible presence of aliasing. it is also easy for a
developer to inadvertantly use a shallow copy or equality
operation where the required semantics can only be achieved by a
deep copy or equality operation.

68 Dynamic
binding/dispatch

The selection of the code to implement an operation may depend
upon more than just the run time type of the target object. In
cases involving binary mathematical operations, for instance,
this choice typically depends on the run time types of both
arguments. As explained in [Bruce et al.], [Castagna] and
[MultiJava], this (and other related situations) are not handled

well by most current OO languages. (A.k.a. "Binary methods
problem")
References:
[Bruce eta al.] Bruce, Kim, Luca Cardelli, Giuseppe Castagna,
The Hopkins Object Group, Gary T. Leavens and Benjamin
Pierce. On Binary Methods, Iowa State University, technical
report #95-08a, December 1995.

[Castagna] Castagna, Giuseppe. Object-Oriented Programming:
A Unified Foundation, Birkauser, Boston, ISBN: 0-8176-3905-5,
1997.

[MultiJava] Clifton, Curtis, Gary T. Leavens, Craig Chambers,
and Todd Millstein. "MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for Java", OOPSLA 2000
Conference Proceedings: ACM SIGPLAN Notices, vol. 35, no.
10, October 2000, pp. 130-145.

69 Control flow in OO
designs/programs

The use of OO methods typically leads to the creation of many
small methods which are physically distributed over a large
number of classes. This, and the use of dynamic dispatch, can
make it difficult for developers to trace critical paths through the
application during design and coding reviews.
JUSTIFICATION: It is important to be able to specify and
review the behavior of the system with respect to scenarios that
affect system safety.
PROPOSED SOLUTION: This issue can be addressed
as follows::
1) At a modeling level, we can use UML sequence diagrams to
specify safety critical scenarios during analysis, and refine these
during design (by presenting the steps in the scenario at a greater
level of detail). Code can then be generated from the overall
UML model and reviewed to ensure it complies with the design
level sequence diagram (assuming the tool responsible for code
generation is not qualified). The analysis and design level
scenarios can be developed as a part of a system level safety

assessment, e.g. as system level scenarios that could lead to
hazards.
2) At a source code level, we can use aspects to physically group
the methods called in such scenarios, so that they appear in a
single file.
Note: Although the methods definitions are physically grouped in
this way in order to create the source code equivalent of an
analysis or design scenario, they are still associated with different
classes in accordance with the OO principles of encapsulation and
data abstraction.
3) Both 1 and 2, with the generation of aspects from UML
models.
RELATED TOPICS: Dynamic dispatch, traceability (of analysis
to design to code)

70 Traceability The difference between dead and deactivated code is not always
clear when using OOT. Without good traceability, identifying
dead vs. deactivated code may be difficult or impossible.

71 Traceability When a design contains abstract base classes, portions of the
implementations of these classes may be overridden in more
specialized subclasses, resulting deactivated code.

72 Traceability Traceability is made more difficult because there is often a lack
of OO methods or tools for the full software lifecycle.

73 Other Formal specification languages are generally accessible only to
those specially trained to use them. To make formal specifications
accessible to developers and the authors of test cases, we must
map such formal specifications to natural language and/or other
less formal notations (e.g. UML). There, however, is currently no
well defined means of doing so. This issue applies to both
preliminary and detailed design.

74 Other Change impact analysis may be difficult or impossible due to
difficulty in tracing functional requirements through
implementation.

75 Other Limitations of UML may limit how non-functional and cross-
cutting requirements of realtime, safety critical, distributed, fault-
tolerant, embedded systems are captured in UML and traced to
the design, implementation, and test cases.

76 Other Configuration management may be difficult in OO systems,
causing traceability problems. If the objects and classes are
considered configuration items, they can be difficult to trace,
when used multiple times in slightly different manners.

77 Traceability What is “low level requirements” for OO? Affects how we do
low-level testing. If we don’t know what low-level requirements
are, we don’t know the appropriate level of testing.
* High level = WHAT
* Low level = HOW

Related to issue raised in tools session – relation be between
artifacts.

Should be addressed in the handbook.

78 Traceability Addressing derived requirements for OO – how does this happen?
How is it different than traditional and how does it tie up to the
safety assessment.Not really unique for OO.

Will be addressed when we do the artifact mapping.

79 Traceability Difficult to identify individual atomic requirements in OO. UML
tends to group requirements in a graphical format. Would
complicate matters if considered derived.
For derived requirements, the entire graph would be passed to the
safety folk for evaluation of safety impact.

80 Traceability Lower levels of decomposition may not be possible for some
requirements (e.g., performance requirements). Levels of
abstraction may be different than traditional.

81 Traceability Are there unique challenges for source to object code traceability
in non-Level A systems? Where should this be addressed?
Multiple tools and ways of addressing s-to-o traceability? (not
really new)
Beyond what DO-178B requires. More of a “DO-178C” issue.
Out of scope for the handbook. Is UML the “source code” for
OO?

82 Traceability Is there another “class” of tool qualification for visual modeling
tools to demonstrate the integrity of these tools? Not necessarily
automating a step, but are looking to make sure the tool is doing
what you want. How to ensure consistency of the tools
(validating the tool)? How to validate the tool when changes
occur?
Typically part of the tool selection process. Concern seems to be
addressed by handbook mod.

83 Traceability Auto-test and code generation tools – what are the concerns when
a single tool generates code and test from the same model? The
concern is with the independence – same input and same tool.
Already covered by DO-178B. Not necessarily OO-specific, but
may be more prevalent with OO tools. Need to be addressed in
some other document or forum.

84 Traceability Maintaining tool environment, archives, … when licenses are
involved is not clear. May need to have some kind of “permanent
license” to support safety and continued airworthiness of the
aircraft.
OO more dependent on tools, but not necessarily an OO-specific
issue.

85 Traceability Maturity/long-term support of tools. Tool manufacturers may not
realize the long-life need of tools. Is this a higher risk in the OO
environment? Education for both the tool and aviation
communities to understand the specific needs for tool
manufacturers and aircraft manufacturers.
Not necessarily OO-specific, but might be more prevalent with
OO.

86 Traceability Are there other types of OO tools that need to be addressed?
Need to anticipate other classes of tools that may come onto the
scene. E.g., traceability tool for OO, transformation tools, CM
tools, refactoring tools (tool to restructure source code to meet
new requirements),

87 Traceability How does OO life cycle data map to the DO-178B section 11 life
cycle data? E.g., What “source code” mean in OO? What is req,
design, code? Transition from text-based to model-based
artifacts.

*** May need to clarify this up front in the handbook, when
making the tie between DO-178B and the handbook.

88 Traceability Configuration management and incremental development of OO
projects and tools. When CM comes into play during the
development process may be different than our current practices,
when using an UML tool. Doing more iterations in OO. How to
“get credit” on iterations. Not necessarily OO-specific, but might
be more prevalent with OO because of the multiple iterations.

89 Traceability Is dynamic dispatch compatible with DO-178B required forms of
static analysis?
Mention that dynamic dispatch hinders some forms of static
analysis including (see DO-178B section 6.3.4f). Tools can treat
this if complete closure exists. DO-178B requires complete
closure.
In cases of incomplete closure, need to define ways to implement.

90 Traceability Fundamental pre-requisite language issues need clarification prior
to adopting LSP and DBC. How can LSP be implemented using
available languages?
Strongly consider a language subset that is amenable to use of
LSP and DBC. Concern is how far to take this subset.

91 Dynamic binding/
dispatch

Inconsistent Type Use (ITU):
When a descendant class does not override any inherited method
(i.e., no polymorphic behavior), anomalous behavior can occur if
the descendant class has extension methods resulting in an
inconsistent inherited state.

92 Dynamic binding/
dispatch

State Definition Anomaly (SDA):
If refining methods do not provide definitions for inherited state
variables that are consistent with definitions in an overridden
method, a data flow anomaly can occur.

93 Dynamic binding/
dispatch

State Definition Inconsistency (SDIH):
If an indiscriminately-named local state variable is introduced, a
data flow anomaly can result.

94 Dynamic binding/
dispatch

State Defined Incorrectly (SDI):
If a computation performed by an overriding method is not
semantically equivalent to the computation of the overridden
method wrt a variable, a behavior anomaly can result.

95 Dynamic binding/
dispatch

Indirect Inconsistent State Definition (IISD):
When a descendent adds an extension method that defines an
inherited state variable, an inconsistent state definition can occur.

96 Dynamic binding/
dispatch

Anomalous construction behavior (ACB1):
If a descendant class provides an overriding definition of a
method which uses variables defined in the descendant’s state
space, a data flow anomaly can occur.

97 Dynamic binding/
dispatch

Anomalous construction behavior (ACB2):
If a descendant class provides an overriding definition of a
method which uses variables defined in the ancestor’s state space,
a data flow anomaly can occur.

98 Dynamic binding/
dispatch

Incomplete construction (IC):
If the constructor does not establish initial state conditions and the
state invariants for new instances of a class, then a state variable
may have in incorrect initial value or a state variable may not
have been initialized.

99 Dynamic binding/
dispatch

State Visibility Anomaly (SVA):
When private state variables exist, if every overriding method in a
descendant class doesn’t call the overridden method in the
ancestor class, a data flow anomaly can exist.

